

AFRL-RH-BR-TR-2010-0001

 Optimizer User’s Manual

Albert Bailey

Northrop Grumman Information Technology

4241 Woodcock Drive, Ste. B-100

San Antonio, TX 78228

Human Effectiveness Directorate

Directed Energy Bioeffects Division

Optical Radiation Branch

2624 Louis Bauer Drive

Brooks City-Base, TX 78235-5128

December 2009

Interim Report for November 2008 to January 2009

Air Force Research Laboratory

711 Human Performance Wing

Human Effectiveness Directorate

Directed Energy Bioeffects

Optical Radiation Branch Brooks

City-Base, TX 78235

Distribution A: Approved for public

release; distribution unlimited. Approval

given by 311
th

 Public Affairs Office, Case

file no. 10-032, 8 February 2010, Brooks

City-Base, Texas 78235.

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for

any purpose other than Government procurement does not in any way obligate the U.S.

Government. The fact that the Government formulated or supplied the drawings,

specifications, or other data does not license the holder or any other person or corporation;

or convey any rights or permission to manufacture, use, or sell any patented invention that

may relate to them.

This report was cleared for public release by the 311
th

 Public Affairs Office at Brooks City

Base, TX and is available to the general public, including foreign nationals. Copies may be

obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RH-BR-TR-2010-0001 HAS BEEN REVIEWED AND IS APPROVED FOR

PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

_______//Signed//________________________

Samuel Y. O, Lt, USAF

Work Unit Manager

711 HPW/ RHDO

 _______//Signed//________________________

 GARRETT D. POLHAMUS, Ph.D.

 Chief, Directed Energy Bioeffects Division

 Human Effectiveness Directorate

 711 Human Performance Wing

Air Force Research Laboratory

This report is published in the interest of scientific and technical information exchange, and its

publication does not constitute the Government’s approval or disapproval of its ideas or findings.

i

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

10-12-2009
2. REPORT TYPE

Interim Technical Report
3. DATES COVERED (From - To)

November 2008-January 2009

4. TITLE AND SUBTITLE

Optimizer User’s Manual

5a. CONTRACT NUMBER

FA8650-08-D-6930
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

0602202F
6. AUTHOR(S)

Albert Bailey

5d. PROJECT NUMBER

5020
5e. TASK NUMBER

 D2
5f. WORK UNIT NUMBER

 05
 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory Northrop Grumman -IT

 711 Human Performance Wing

 Human Effectiveness Directorate

 Directed Energy Bioeffects

 Optical Radiation Branch

 Brooks City-Base, TX 78235-5214

8. PERFORMING ORGANIZATION
REPORT
 NUMBER 711 Human Performance Wing 4241 Woodcock Dr., Ste B-100

Human Effectiveness Directorate San Antonio, TX 78228

Directed Energy Bioeffects

Optical Radiation Branch

Brooks City-Base, TX 78235-5214

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

 Air Force Research Laboratory

 711 Human Performance Wing

 Human Effectiveness Directorate

 Directed Energy Bioeffects

 Optical Radiation Branch

 Brooks City-Base, TX 78235-5214

711 HPW/RHDO

 11. SPONSOR/MONITOR’S REPORT

NUMBER(S)

 AFRL-RH-BR-TR-2010-0001
12. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution A: Approved for public release; distribution unlimited. Approval given by local Public Affairs Office #10-032,

8 February 2010, Brooks City-Base, Texas 78235.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This manual documents the RHDO optimizer code. This code is designed to optimize inputs to client

programs to produce desired outputs, using genetic algorithms to guide the search.

The Argonne National Laboratory PGAPack library is used to determine the optimization search values. It

works on cluster computers as well as stand-alone PCs. The code is written in C++ to run under Microsoft

Windows or Linux with no source code modifications.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18.
NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE
PERSON

Samuel Y. O
a. REPORT

 U

b. ABSTRACT

 U

c. THIS PAGE

 U

SAR
37

19b. TELEPHONE NUMBER (include

area code)

 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. 239.18

ii

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

This Page Intentionally Left Blank

iii

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

TABLE OF CONTENTS

TABLE OF CONTENTS ... iii
LIST OF FIGURES .. iii
ABSTRACT ... iv

1. INTRODUCTION .. 1

2. GENETIC ALGORITHMS .. 2

3. PGAPACK UTILIZATION ... 3

4. PROGRAM STRUCTURE .. 5

5. INPUT FILES ... 6

6. FUTURE DIRECTIONS .. 9

REFERENCES ... 10

APPENDIX A: OPTIMIZER SOURCE CODE ... 11

LIST OF FIGURES

Figure 1. The variable values to be optimized are stored as a bit sequence .. 2
Figure 2. New trial solutions are created by mutation (a) or crossover (b)... 3
Figure 3. Multiple trial solutions can be evaluated in parallel if multiple processors are available 4
Figure 4 Sample input file to the Optimizer code for the client code BTEC .. 7
Figure 5 Sample input file for BTEC with placeholder values shown in bold red 9

file:///C:/Users/Aurora.Shingledecker/AppData/Local/Microsoft/Windows/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/BC44V3BS/Optimizer%20User's%20Manual%20TO6%20TR%20Bailey%20%2012-22-09.doc%23_Toc249838565
file:///C:/Users/Aurora.Shingledecker/AppData/Local/Microsoft/Windows/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/BC44V3BS/Optimizer%20User's%20Manual%20TO6%20TR%20Bailey%20%2012-22-09.doc%23_Toc249838566
file:///C:/Users/Aurora.Shingledecker/AppData/Local/Microsoft/Windows/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/BC44V3BS/Optimizer%20User's%20Manual%20TO6%20TR%20Bailey%20%2012-22-09.doc%23_Toc249838567
file:///C:/Users/Aurora.Shingledecker/AppData/Local/Microsoft/Windows/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/BC44V3BS/Optimizer%20User's%20Manual%20TO6%20TR%20Bailey%20%2012-22-09.doc%23_Toc249838568
file:///C:/Users/Aurora.Shingledecker/AppData/Local/Microsoft/Windows/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/BC44V3BS/Optimizer%20User's%20Manual%20TO6%20TR%20Bailey%20%2012-22-09.doc%23_Toc249838569

iv

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

This Page Intentionally Left Blank

1

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

ABSTRACT

This manual documents the RHDO optimizer code. This code is designed to optimize inputs to

client programs to produce desired outputs, using genetic algorithms to guide the search.

The Argonne National Laboratory PGAPack library is used to determine the optimization search

values. It works on cluster computers as well as stand-alone PCs. The code is written in C++ to

run under Microsoft Windows or Linux with no source code modifications.

1. INTRODUCTION

Computer simulations allow predictions of effects produced as a result of certain input

conditions. Frequently, the purpose is to determine what input conditions are required to produce

a desired effect. This determination can only be achieved by running the simulation multiple

times with different input conditions, iteratively improving the guesses for the input conditions

until the desired effect is achieved. This iterative process is frequently accomplished manually,

but this requires significant human time and effort. The optimization process is frequently better

accomplished by using a computer program to control and execute the simulation iterations. This

document describes a code produced for this purpose.

This code was constructed to run other programs, changing the input files and examining the

output files to optimize some desired condition. The optimizer code is designed to be

independent of the code whose inputs are being optimized: it does not need to be linked to the

other program and few if any changes to the program should be required.

The program operates by creating input files for the client program, executing that program via a

system command, then reading the resulting output files to determine how close the outputs are

to the desired values. On a machine or cluster with multiple processors, the optimizer can

execute several trials at once, speeding the optimization process. The code works under

Microsoft Windows or Linux without modification of the source code.

The code has been initially written to support optimizations using the BTEC code.
1
 However, it

has been made as general as possible to support use with other programs as well. Doing so

would require some new code to be written, since each program has its own way of reading input

files and writing output files. The portions that would require alteration have been localized to

ease the required modifications.

The core of the optimizer is the Argonne National Laboratories parallel genetic algorithm

PGAPack library. The library has been incorporated largely unchanged. (Minor changes were

made to convert the library from C to C++.) The library is well documented in the Argonne

National Laboratory report ANL-95/18. The original code and documentation are available on

the Web at

http://www-fp.mcs.anl.gov/CCST/research/reports_pre1998/comp_bio/stalk/pgapack.html .

http://www-fp.mcs.anl.gov/CCST/research/reports_pre1998/comp_bio/stalk/pgapack.html

2

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

2. GENETIC ALGORITHMS

Genetic algorithms are an optimization technique inspired by evolution. They operate by

attempting to “breed” a solution. An initial population of trial input values is generated

randomly. These trial solutions are tested and the resulting output values computed.

The solutions that are farthest from the desired result are “killed” and the remaining solutions

retained. Additional new trial solutions are generated by mutation and cross-breeding of the

retained solutions. The new trial solutions are tested and their deviation from the optimal is also

recorded. The population of solutions is then culled again, retaining the best sets of input values.

The procedure is repeated over and over again. Eventually the surviving trial solutions should be

good approximations to the optimum.

Genetic algorithms have the advantage that they are very robust and trustworthy. They are able

to find the best solution even in the presence of false minima. They do not require that the

solution space be well behaved. Incorporating constraints is not a problem. Trial solutions that

are not within constraints are “killed” and are not used in generating new trial solutions.

In general, any kind of data (integer, boolean, float) can be used as a variable for optimization, as

long as it can be represented as a bit sequence. The genetic algorithms themselves work without

any reference to the type of data under consideration. The only point where the nature of the

data becomes significant is in the mapping from the bit sequence to a numerical value. For

example, if a variable is optimized in the region between 0 and 1 using an 8 bit sequence, the

optimization will be a choice between 256 (2
8
) equally spaced values between 0 and 1, separated

by 0.0039 (1/256). Any number of optimization variables can be used, combining their bit

stream into a single “chromosome” representing the entire description of the solution (Figure 1).

Figure 1. The variable values to be optimized are stored as a bit sequence

3

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

The two techniques used to produce new trial solutions are mutation and crossover (Figure 2).

Mutation takes an existing trial solution and flips one or more of the bits of the solution. In

crossover, a new trial solution is constructed by combining portions of two existing trial

solutions.

3. PGAPACK UTILIZATION

The Optimizer reads in an input file designating the variables to be optimized. This is discussed

in detail in a later section. It then calls PGAPack to optimize the client code. PGAPack first

constructs a set of trial solutions. The evaluateCase function is called by PGAPack for each

new trial solution that is constructed. This function creates one or more new input files with the

solution variables inserted for the dummy variables. The routine then uses a system call to run

the client program, using these new input files. The output files are then read and the quality of

the solution is judged, and returned to the PGAPack library as the return value. A value of zero

represents the idealized goal, any actual value (even the optimum attainable) being higher. This

entire process is enclosed in a try ... catch block, so that even if the procedure fails for

some reason, the optimizer code does not crash: it simply returns a set large value (BADFAIL)

as the result. It is possible for the solution variables to be so inappropriate that the client program

crashes. The routine checks the return value of the system call, and throws an exception if zero

was not returned. This is treated as any other failure in the try block, and the BADFAIL value

is returned by evaluateCase.

1011011110110011

Mutation

a)

10110011

01110101

10110101

Crossover

b)

Figure 2. New trial solutions are created by mutation (a) or crossover (b)

4

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

The PGAPack routines have been set in the namespace PGAPack. The other routines and

variables, except for the main program, are in the namespace Optimizer. There is one new

function, MyPGARun, not part of PGAPack but based on routines in PGAPack, which uses

the PGAPack namespace.

On a cluster or multi-core machine, multiple cases can be evaluated simultaneously, speeding the

execution of the optimization (Figure 3). EvaluateCase creates a separate subdirectory for the

input and output files for each process, removing this subdirectory before returning.

To test the quality of a solution, evaluateCase calls the getBadness method of one or more

Condition objects. The abstract virtual Condition base class is general, making no assumptions

about the client program being run or the types of output files being created. In order to optimize

a particular program, one or more subclasses must be created.

Figure 3. Multiple trial solutions can be evaluated in parallel if multiple processors are available

Construct new trial organisms

......
%Var%
.........

......
Val 1
.........

......
Val 2
.........

......
Val N
..........

Client
Program

Client
Program

Client
Program.

......
Result 1

.........

......
Result 2

.........

......
Result N

..........

Evaluate and cull

5

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

4. PROGRAM STRUCTURE

The Optimizer code consists of the following sections:

Optimizer.cpp – This is the primary core of the code. It contains the main routine which

sets up and controls the optimization. In addition to the main routine, this file also holds the

evaluateCase function that is called by PGAPACK for each new trial solution. The

evaluateCase routine inserts the trial solution variables in the input file for the client code,

executes the code, evaluates the outputs, and returns a measure of the quality of the trial solution.

This file also includes a number of ancillary routines and output routines (makeProcName,
findAndReplace, readInputFile, flispslash, printCurrentState,

printFinalState). This file also includes MyPGARun, an altered version of the PGAPack

driver routine PGARunGM.

Optimizer.h – This is header file for the optimizer code.

Condition.h – This file defines the abstract Condition base class. For each code to be

optimized, subclasses must be created which can read the output files of the client program and

determine the degree to which the desired condition has been met. This base class has two

virtual methods that must be overloaded by subclasses: isConstraint()and

getBadness().

Two types of conditions can be created: minimizations and constraints. Constraints are

conditions that must be met for a solution to be valid. When the method getBadness()is

called, constraints should return the predefined large number BADFAIL if the constraint is not

satisfied and zero if it is satisfied. Optimizations should return a positive value that is lower for

a better trial solution. Constraints should return a value of true for calls to

isConstraint(), and optimizations should return a value of false.

Each condition is assumed to be able to be determined by evaluating a single output file created

by the client program. Multiple constraints may evaluate the same output file or different output

files, as desired. Only one minimization condition is meaningful, but multiple constraint

conditions are allowed. An optimization can have up to 10 constraints.

SpecificConditions.h, SpecificConditions.cpp – These files provide the

constraints for a given client program. They must define the condition subclasses, overriding

the pure virtual isConstraint() and getBadness() methods of the Condition

class.

The header file must also define the values CONSTRAINT0, CONSTRAINT1, ... , setting

these values to the names of the actual constraint subclasses to be used.

6

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

ProgramSpecific.cpp – This file contains the functions getExecutionString,

getConditionOutputFile, and cleanString which are specific to the client

program to be optimized. getExecutionString returns the line for the system call to

execute the client program, including all arguments. The input file name and output directory are

provided as inputs. getConditionOutputFile returns the full filepath-filename string

needed to open the output file used for a specific condition. The filename and output directory

are provided as inputs. cleanString provides for stripping extraneous comments from input

files. This was needed by the BTEC program which frequently contains percent (%) signs in

comments, which confuse variable replacement. (Percent signs MUST be used ONLY with

dummy replacement values for this optimization program to work properly.)

PGAPack.h – This header file is included by Optimizer.cpp to interface to the PGAPack

code. The remainder of the PGAPack code is best managed by compiling it into a library.

mathexpr.h, mathexpr.cpp – These are freeware routines by Yann Ollivier which

allow for mathematical expressions to be used as well as individual values for dummy variable

replacement. For example, an input file line might have a key-value pair written as
power = %Var1 + (2*Var2)%

If the trial solution had Var1 equal to 2.2 and Var2 equal to 1.5 then the input file after

replacement would have the key-value pair
 power = 5.2

since 2.2+(2*1.5) = 5.2. This code is available online at

http://www.yann-ollivier.org/mathlib/mathexpr.php

KeyValueFileReader.h, KeyValueFileReader.cpp – These routines allow the

input to the optimizer to use the same key-value-comment format as is used in other input files

for the BTEC code. These routines are taken directly from the BTEC code repository.

helcat_utilty.h – These are some general utility routines taken from the HELCAT code

base. They are used for a variety of simple string manipulations.

5. INPUT FILES

The Optimizer code itself has an input file which controls its operations. It, in turn, will write

input files for the client program to produce trial solutions. An example input file used to run the

BTEC code is shown below in Figure 4. To execute the code from a command line interface, one

would simply type:

 Optimizer inputfile

the argv[1] value (inputfile) being opened as the input file.

http://www.yann-ollivier.org/mathlib/mathexpr.php

7

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

The program works by generating an initial population of trial solutions. The poorer solutions are

discarded and new trial solutions are generated by mutation and crossover to replace them. This

represents a new generation. The fitness of the new solutions is examined and the process is

repeated. generationSize is the total number of trial solutions retained. Each generation,

numReplace trial solutions are discarded and replaced with new trial solutions. The process

is allowed until maxIterations generations have been created. The program can stop before

maxIterations generations have been created if the optimization ceases to improve or if all

the individuals in a generation become identical. When running on multiprocessors, the optimum

size for numReplace is one less than the total number of processors used. This allows a

separate case to run on each processor without interference. (The root processor does not do

evaluations when the number of available processors is greater than two.) generationsize

should be at least twice numReplace to avoid discarding better solutions to replace them with

worse ones.

randomNumberSeed is an integer variable used to initialize the random number generator,

which generates a random set of initial trial solutions, and to produce random mutations and

crossovers. Rerunning an optimization with a different randomNumberSeed value is a good

check as to whether the Optimizer has converged to the correct solution.

numOptVars represents the number of variables being independently changed in the

optimization. Additional variables may be changed as a result, if they depend on those values.

For example, if laser pulse duration and laser pulse repetition rate are independent variables,

Figure 4 Sample input file to the Optimizer code for the client code BTEC

#Test input file for optimizer

maxIterations = 5 # Maximum number of iteration generations

generationSize = 30 # Number of individuals in a generation

numReplace = 10 # Number to replace each generation

randomNumberSeed = 3 # Change seed to check optimization (integer)

numOptVars = 5 # Number of variables to be optimized

optVarMin[0] = 0.0 # Laser power mininum

optVarMax[0] = 10.0 # Laser power maximum

optVarMin[1] = 1000.0 # Wavelength minimum

optVarMax[1] = 4000.0 # Wavelength maximum

optVarMin[2] = 0.001 # Laser on time minimum

optVarMax[2] = 10.0 # Laser on time maximum

optVarMin[3] = 0.2 # Pulse period as fraction of laser on time

minimum

optVarMax[3] = 1.0 # Pulse period as fraction of laser on time

maximum

optVarMin[4] = 0.0 # LOg10(Pulse period/Pulse duration) mininum

optVarMax[4] = 1.0 # Log10(Pulse period/Pulse duration) maximum

numConditions = 2 # Number of conditions for the optimization

condition[0]_goal = 1.0 # Maximum damage allowed at any point in

condition[0]_outputFile = "Sensor-Scal-2.t.last.btlog" # Damage threshold probe

condition[1]_goal = 0.0 # Not used. Just minimize

condition[1]_outputFile = "Sensor-Scal-1.t.last.btlog" # Temperature rise probe

optOutFile = "Opt1.opo" # Optimizer output file

numVarInFiles = 2 # Number of input files with varying values

varInFile[0] = "test.config.in" # Main program input file

varInFile[1] = "../StandardEmitter/test.emitter" # Input file to be altered

workPath = "../OptTemp" # Name of directory for work files (must already exist)

8

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

laser duty cycle would be set as a dependent variable. The mathexpr library provides a simple

way to set these dependent variables. For each independent variable, a minimum value

optVarMin and a maximum value optVarMax must be specified. When searching over

many orders of magnitude, it can be more advantageous to set the independent variable as the

common logarithm of the variable being sought. The program is dimensioned to allow for up to

ten independent variables (Var0, Var1, Var2, ... Var9). While the program will work

even for searches with only a single independent variable, it is not the optimum method for

searching under such a situation.

numConditions represents the number of conditions for a solution. Exactly one of these

should be a minimization criterion; the rest should be constraints. Up to ten conditions

(numbered 0 to 9) can be set. Each condition must have value of CONDITION# (# = 0 to 9)

defined in SpecificConditions.h and must be defined to a Condition subclass type

defined therein. For each condition there also needs to be an output file that is examined

(condition[#]_outputFile) to determine how well the trial solution meets the condition,

and a goal (condition[#]_goal) for the condition. For optimizations, the Condition should

strive to reach the goal. For constraints, the goal is a level that either must be met or must not be

exceeded.

In order for the differing input variable to be input into the client program, the optimizer will

need to rewrite one or more input files read by the client program. numVarFiles represents

the number of different input files that must be rewritten to specify a trial solution. For each file

that is to be rewritten, the name of the input file varInFile[#] (# = 0 to 9) should be

specified. There is also provision for an overall working directory, workPath, to be specified

as well.

For example, shown below is an input configuration file (test.config.in)for the BTEC

code, one of the files designated in the input file to the optimizer itself. This code, as is, is not

an acceptable input file for BTEC. In two places, boldfaced and in red, the values of two key-

value pairs have been replaced with placeholders. The placeholders are designated by being

fenced with percent (%) signs. The optimizer code will read in this file and store it in a string.

For each evaluation of a trial solution, the placeholder values will be replaced and the resulting

string written out to form an input file for BTEC. The first placeholder will be replaced by a

value dependent on the second independent variable (Var2) of the optimization. The second

placeholder is replaced by the file designated in varInFile[1]. The other independent

variables not used in this file have placeholders that use them within the file designated by

varInFile[1].

9

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

It is important that the input files not have percent (%) signs in the variable names or values,

since this is the mark the code uses to determine placeholders. The code has been written in such

a way as to allow for percent signs in comments: when reading in the initial input files, all the

comments are stripped using the cleanString routine. In adapting the optimizer to work

with other client codes, similar measures might be required.

6. FUTURE DIRECTIONS

The Optimizer code has been initially constructed to work with the BTEC code. With minor

modifications, it could also be used as an optimizer for other RHDO codes. This would likely

require routines to deal with other input and output file formats, such as XML.

#KeyValue config file

Dimensions = 1 # INT: number of dimensions to use (1 | 2)

SimulationType = "Thermal" # INT: problem (sim) type

AxialGridType = 0 # INT: 0 = UNIFORM, 1 = STRETCHED

Nz = 600 # INT: number of z grid divisions

zMin = 0 # DBL: minimum z coordinate

zMax = 0.525 # DBL: maximum z coordinate

zStretchRatio = 1.05 # DBL: z stretch ratio for

zMinBC = 7 # INT: z min boundary condition type

zMaxBC = 0 # INT: z min boundary condition type

RadialGridType = 0 # INT: radial grid type

Nr = 200 # INT: number of r grid divisions

rMax = 1.0 # DBL: Max r coordinate

rStretchRatio = 1.02 # DBL: r stretch ratio for non-uniform grid

rMaxBC = 0 # INT: r max boundary condition type

TotalSimTime = %Var2 + 0.1% # DBL: total simulation time

dt = 0.001 # DBL: time step for fixed emitter, not for adaptive

dtMax = 0.010 # DBL: maximum time step

TissueBaseTemp = 37 # DBL: tissue baseline temperature

AmbientTemp = 20 # DBL: ambient temperature

RelHumidity = .50 # DBL: relative humidity

LogDataFlag = 1 # INT: log data flag (0 = NO, 1=YES)

LogInterval = 0 # INT: log interval in time steps

stepsMaxPowerRatio = 10.0 # DBL: max power ratio

MinPowerRatio = 0.1 # DBL: min power ratio

ConvergeThresh = 0.10 # DBL: convergence threshold for search

Sensor[0] = "../Sensor/test.sensor.1.btec"

Sensor[1] = "../Sensor/test.sensor.2.btec"

Sensor[2] = "../Sensor/test.sensor.3.btec"

StandardEmitter[0] = "%File1%" # STR: emitter file

Layer[0] = "../Layer/layer1.layer" # STR: layer filename

Layer[1] = "../Layer/layer2.layer" # STR: layer filename

Layer[2] = "../Layer/layer3.layer" # STR: layer filename

Layer[3] = "../Layer/layer4.layer" # STR: layer filename

InitialConditionsFlag = 1 # INT: initial conditions flag

InitialConditionsFile = "../InitialConditionsFile/37_20_50_7_0.axialTemp.t.last.btlog" " #

Figure 5 Sample input file for BTEC with placeholder values shown in bold red

10

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

The genetic algorithm technique that has been used is very robust, but not very efficient. In the

future it might be desirable to incorporate a faster routine to refine the optimum once the genetic

algorithm technique has discovered the rough location in parameter space of the minimum. The

technique is also not optimal where only one or two variables need to be optimized. In these

situations, a bracketing technique might be more appropriate.

References

1. L. Irvin, P.D.S. Maseberg, G. Buffington, C.D. Clark III, R. J. Thomas, M. L. Edwards, J.

Stolarski “BTEC Thermal Model”, report AFRL-RH-BR-TR-2008-0006, 2008.

11

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

Appendix A: Optimizer Source Code

Condition.h

#ifndef Condition

#define ConditionH

#include <string>

namespace Optimizer

{

class Condition

/// This is a pure virtual class for conditions to be met under evaluation.

/// Subclasses can be added as needed to support different types of conditions

/// and different types of output files to read.

/// Two initial subclasses have been written for BTEC, one for a condition to

/// be maximized anywhere on the domain, and one for an condition not to be

/// exceeded.

/// Last revision: 1/26/09, A.W. Bailey.

{

protected:

 std::string mOutputFile; /// Filename of output file examined

 double mGoal; /// Goal value

public:

 /// Constructor

 Condition() {}

 /// Destructor

 ~Condition() {}

 /// Initializer

 void init(std::string outputFile, double goal)

 {

 mOutputFile = outputFile;

 mGoal = goal;

 }

 /// Note if is a constraint

 virtual bool isConstraint() = 0;

 /// Look at the file and see how well the condition is met

 virtual double getBadness() = 0;

};

} // End namespace optimizer

#endif

12

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

HELCAT_Utility.h

#ifndef UtilityH

#define UtilityH

#include <cstring>

#include <fstream>

#include <iomanip>

#include <iostream>

#include <limits>

#include <algorithm>

#include <stdlib.h>

#include <string>

#include <sstream>

#include <ctime>

// The following #define _USE_MATH_DEFINES is for Visual C++ foible

#define _USE_MATH_DEFINES

//#include <math.h>

#include <cmath>

//#include "ConsoleLasem_stdafx.h"

//#include <osg/Vec3d>

//#include <osg/Matrix>

// Visual C++ precompiler "loses" the global math constants, so we put the

// ones we need here

#define M_PI 3.14159265358979323846

#define M_PI_2 1.57079632679489661923

/// \file

/// This file is used to hold a number of templates and function

/// that are of general use. It also declares all the usual libraries.

/// By including it as a header file, most other files standardly needed

/// are included.

/// Math-Utility level

namespace HELCAT_tk

{

/*

HELCAT_TK_2_API double RadiansToDegrees(double a_angle_radians);

HELCAT_TK_2_API double DegreesToRadians(double a_angle_degrees);

class Vector;

HELCAT_TK_2_API osg::Vec3d ConvertToOSG(const Vector & a_vector_HELCAT);

class Position;

HELCAT_TK_2_API osg::Matrix ConvertToOSG(const Position & a_matrix_HELCAT);

*/

/// Transfer of sign

template <class T>

inline T sign (T a, T b) {

 return (a < 0 ? -b : b);

};

#ifdef USEFASTMATH

#include <fastmath>

/// Get sin and cosine from fastmath routines

inline void sincos(double a, double &x, double &y)

{

 _fm_sincos(a, &x, &y);

}

/// Get sin and cosine from fastmath routines

inline void sincosl(long double a, long double &x, long double &y)

{

13

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

 _fm_sincosl(a, &x, &y);

}

#endif

#ifndef USEFASTMATH

/// Get sin and cosine from regular routines

inline void sincos(double a, double &x, double &y)

{

 x = sin(a);

 y = cos(a);

}

/// Get sin and cosine from regular routines

inline void sincosl(long double a, long double &x, long double &y)

{

 x = sinl(a);

 y = cosl(a);

}

#endif

/// Get the current date in iso format yyyy-mm-dd

/// This routine gives a warning in Visual C++

/// even though the code is ANSI C++ complient.

#pragma warning (disable : 4996)

inline std::string getDate()

{

 time_t raw_time;

 time(&raw_time);

 struct tm * timeinfo = localtime(&raw_time);

 char buffer[25];

 strftime(buffer,25, "%Y-%m-%d", timeinfo);

 return (std::string(buffer));

}

/// Search through an array for an interval in which a value resides

template <class T>

inline int hunt(const T value, T *array, int narray)

{

 // Hunt through to find the interval in which a value resides

 int nlow = 0;

 int nhigh = narray;

 int nmid;

 while ((nhigh - nlow) > 1)

 {

 nmid = (nhigh + nlow)/2;

 if (array[nmid] > value) nhigh = nmid;

 else nlow = nmid;

 }

 return nlow;

};

/// Set a object from a string

template <class T>

inline void fromstring(std::string s, T & x)

{

 std::istringstream iss(s);

 iss >> x;

 if (iss.fail())

 throw std::invalid_argument("Bad conversion from string");

};

// Specialization for objects that are already strings

template<>

inline void fromstring(std::string s, std::string& x)

{x = s;}

14

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

/// Convert an object of type T to a string

template <class T>

inline std::string tostring(const T& t, int precision)

{

 std::ostringstream os;

 os << std::showpoint << std::setprecision(precision) << t;

 return os.str();

}

template<class T>

inline std::string tostring(const T& t)

{

 std::ostringstream os;

 os << std::showpoint << std::setprecision(7) << t;

 return os.str();

}

/// Specializations for objects that are already strings

template<>

inline std::string tostring(const std::string& t)

{return(t);}

/// Compute the square of a value

template <class T>

inline T square(const T x)

{

 return x*x;

}

/// Compute the cube of a value

template <class T>

inline T cube(const T x)

{

 return (x*x*x);

}

/// Swap the values of two variables

template <class T>

inline void swap(T & x, T & y)

{

 const T z = x;

 x = y;

 y = z;

}

/// Delete any data associated with an array pointer

template <class T>

inline void clearPointer (T*& p)

{

 if (p != 0)

 {

 delete[] p;

 p = 0;

 }

}

/// Return a new line character as a string

inline std::string newLine()

{

 char nl[2];

 nl[0] = '\n';

 nl[1] = 0;

 std::string nls = std::string(nl);

 return nls;

}

/// Insert a number between to strings with no additional blanks

inline std::string insertNumber(std::string beginning, int number, std::string ending)

{

 std::ostringstream oss;

15

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

 oss << beginning << number << ending;

 return oss.str();

}

}

#endif

16

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

Optimizer.h

#ifndef OptimizerH

#define OptimizerH

#include "mpi.h"

#include "stdafx.h"

#include "SpecificConditions.h"

#include "helcat_utility.h"

#include "mathexpr.h"

#include "pgapack.h"

#include <vector>

#include <iostream>

#include <fstream>

namespace Optimizer

{

 const static int MAXVARS = 10;

 const static int MAXFILES = 10;

 /// Variables for optimization

 double optVar[MAXVARS];

 /// Pointers to mappings between variable strings and values

 RVar* optVarMap[MAXVARS];

 double optVarMin[MAXVARS]; ///< Minimum values for optimizer variables

 double optVarMax[MAXVARS]; ///< Maximum values for optimizer variables

 double BADFAIL = 1.0E10; ///< Failure flag for out of range for variables

 /// File holding the variable files that are to be altered, for this process

 std::string varInProcFile[MAXFILES];

 /// Files holding the initial value of the input file strings

 std::string varInputValue[MAXFILES];

 /// Name of the executable string to be used: filename and arguments for this process

 std::string executeString;

 /// String used to create a directory for this process

 std::string mkdirString;

 /// String used to remove the directory for this process

 std::string rmdirString;

 /// Number of variables to be replaced (named %Var0%, %Var1%, etc.)

 int numOptVars;

 /// Number of alterable input files to use for the executed program,

 /// including the main configuration file

 int numVarInFiles;

 /// Output file for optimizer

 std::string optOutFile;

 /// Condition requirements. Pointer to conditions.

 /// Boost library shared pointers would be better here,

 /// but sticking to standard library for now.

 /// Conditions must be set up by the calling routine and not deleted until

 /// they are no longer needed.

 /// This library only stores pointers to the conditions.

 std::vector<Condition*> optConditions;

 /// Evaluate the goodness of a function for a particular set of parameters

 /// The return value is zero when conditions are perfect

 double evaluateCase(PGA::PGAContext *ctx, int p, int pop);

17

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

 /// This routine takes a filename and mutates it based on the processor rank

 std::string makeProcName(std::string path, std::string filename, int rank);

 /// This routine replaces all occurrences of a substring in in a string

 /// with a replacement substring

 std::string findAndReplace(std::string oldstring, std::string oldsubstring,

 std::string newsubstring);

 /// This function reads in an input file into a string

 /// It strips off ending comments

 /// This eliminates any % signs in the comments that might cause problems

 std::string readInputFile(std::string inFile);

 /// This routine is used to flip slashes from forward to back for Windows

 std::string flipslash(std::string a_string);

 /// Routine to print the current state of the optimization

 void printCurrentState(PGA::PGAContext *ctx, int pop);

 /// Routine to print the final state of teh optimization

 void printFinalState(PGA::PGAContext *ctx, int pop);

 /// This routine constructs the execution string for the specific program

 std::string getExecutionString(std::string* input_files,

 std::string output_directory);

 /// Routine to clean input lines of comments

 std::string cleanString(std::string linestring);

 /// Routine to set the name of the output file read by a condition

 std::string getConditionOutputFile(std::string filename,

 std::string output_directory);

} // End namespace

namespace PGA

{

 /// Routine to replace PGARun

 void MyPGARun(PGA::PGAContext *ctx);

}

#endif

18

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

Optimizer.cpp

// Optimizer.cpp : Defines the entry point for the console application.

//

#include "Optimizer.h"

#include "KeyValueFileReader.h"

#include <iomanip>

#include <sstream>

using namespace std;

using namespace Optimizer;

/// This optimizer code uses the Argonne National Laboratories Parallel Genetic

/// Algorithm PGAPack library. The code is designed to call BTEC (or any other

/// code, writing new input files and reading new output files.

/// Last revision: 1/26/09, A. W. Bailey.

 int main(int argc, char** argv)

{

 PGA::PGAContext *ctx;

 int myrank; /// Processor rank

 kvfr::KeyValueFileReader fileReader; ///< Key-value file reader

 int maxIterations; ///< Maximum number of iterations to allow

 int generationSize; ///< Number of individuals in each generation

 int randomNumberSeed; ///< Random number seed (defaults to 1)

 int numReplace; ///< Number of individuals to replace each generation

 ///< (default is number of processors - 1)

 int numConditions; ///< Number of conditions to be satisfied

 string varInFile[MAXFILES]; ///< Input files with variable values

 string workPath; ///< Path for temporary work files

 // Initialize MPI

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

 // Read in the input file

 string optInput = argv[1];

 ifstream optimizer_input(argv[1],ios::in);

 fileReader.init(optimizer_input);

 // Read in the maximum number of interations

 if(fileReader.setVar(maxIterations, "maxIterations"))

 maxIterations = 1000; // Default

 // Read in the generation size

 if (fileReader.setVar(generationSize,"generationSize"))

 generationSize = 100; // Default

 // Read in the random number seed

 if (fileReader.setVar(randomNumberSeed,"randomNumberSeed"))

 randomNumberSeed = 1; // Default

 if (fileReader.setVar(numReplace, "numReplace"))

 {

 // Base the number to replace each generation on the number

 // of processors being used

 int num_processes;

 MPI_Comm_size(MPI_COMM_WORLD, &num_processes);

 if (num_processes <= 2)

 {

19

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

 numReplace = num_processes;

 }

 else

 {

 numReplace = num_processes - 1;

 }

 }

 // Read the name of the output file and open it

 fileReader.setVar(optOutFile, "optOutFile");

 // Open and close the file to get rid of any previous values

 ofstream optOutStream;

 optOutStream.open(optOutFile.c_str(), ios::trunc);

 optOutStream.close();

 // Read in the number of varying input files for the executable

 fileReader.setVar(numVarInFiles, "numVarInFiles");

 // Read in the names of the varying input files for the executable

 for (int n=0; n< numVarInFiles; n++)

 {

 fileReader.setVar(varInFile[n],

 HELCAT_tk::insertNumber("varInFile[", n, "]"));

 }

 // Read in the work file path. Remove any "/" at the end.

 fileReader.setVar(workPath, "workPath");

 int pathSize = int(workPath.size()) -1;

 if (workPath[pathSize - 1] == '/')

 workPath = workPath.substr(0, pathSize-1);

 // Read in the files with variables to be changed

 for (int n=0; n<numVarInFiles; n++)

 {

 varInputValue[n] = readInputFile(varInFile[n]);

 }

 // Create the strings for creating and removing work directories for

 // this process

 string dirString = workPath + string("/Process")

 + HELCAT_tk::tostring(myrank) + string("Temp");

#ifdef WIN32

 mkdirString = string("mkdir ")

 + flipslash(dirString);

 rmdirString = string("rmdir ")

 + flipslash(dirString) + string (" /s /q");

#else

 mkdirString = string("mkdir ") + dirString;

 rmdirString = string("rm -r ") + dirString;

#endif

 // Construct the variable input files needed based on which

 // processor is being used

 for (int n=0; n<numVarInFiles; n++)

 {

 varInProcFile[n] = dirString +

 HELCAT_tk::insertNumber("/Varfile", n, ".txt");

 }

 // Replace the names of the variable input files

 for (int n=0; n<numVarInFiles; n++)

 {

 for (int i=0; i<numVarInFiles; i++)

 {

 varInputValue[n] = findAndReplace(

 varInputValue[n],

 HELCAT_tk::insertNumber("%File", i, "%"),

 varInProcFile[i]);

 }

 // Write out the new input file

20

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

 ofstream var_out(varInProcFile[n].c_str(),ios::trunc);

 var_out << varInputValue[n];

 var_out.close();

 }

 // Construct the executable file string

 executeString = getExecutionString(varInProcFile, dirString);

 // Get the number of variables to be optimized

 fileReader.setVar(numOptVars,"numOptVars");

 for (int i=0; i<numOptVars; i++)

 {

 // Get the max and min values for the variables

 fileReader.setVar(optVarMin[i],

 HELCAT_tk::insertNumber("optVarMin[", i, "]"));

 fileReader.setVar(optVarMax[i],

 HELCAT_tk::insertNumber("optVarMax[", i, "]"));

 // Set up mapping of the variable strings and value

 string varname = string("Var") + HELCAT_tk::tostring(i);

 optVarMap[i] = new RVar(varname.c_str(),

 &optVar[i]);

 }

 // Get the optimization condition and constraints

 fileReader.setVar(numConditions,"numConditions");

 for (int i=0; i<numConditions; i++)

 {

 string condition_type;

 double condition_goal;

 string conditionOutputFile;

 Condition* new_condition;

 fileReader.setVar(condition_goal,

 HELCAT_tk::insertNumber("condition[", i, "]_goal"));

 fileReader.setVar(conditionOutputFile,

 HELCAT_tk::insertNumber("condition[", i, "]_outputFile"));

 // Pick the appropriate condition object to use

 // Don't need an ifdef here: must be at least one condition

 if (i == 0){new_condition = new CONDITION0 ;}

#ifdef CONDITION1

 else if (i == 1) {new_condition = new CONDITION1 ;}

#endif

#ifdef CONDITION2

 else if (i == 2) {new_condition = new CONDITION2 ;}

#endif

#ifdef CONDITION3

 else if (i == 3) {new_condition = new CONDITION3 ;}

#endif

#ifdef CONDITION4

 else if (i == 4) {new_condition = new CONDITION4 ;}

#endif

#ifdef CONDITION5

 else if (i == 5) {new_condition = new CONDITION5 ;}

#endif

#ifdef CONDITION6

 else if (i == 6) {new_condition = new CONDITION6 ;}

#endif

#ifdef CONDITION7

 else if (i == 7) {new_condition = new CONDITION7 ;}

#endif

#ifdef CONDITION8

 else if (i == 8) {new_condition = new CONDITION8 ;}

#endif

#ifdef CONDITION19

 else if (i == 9) {new_condition = new CONDITION9 ;}

#endif

 else

21

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

 {

 // Unknown condition type

 throw invalid_argument("Unknown condition type");

 }

 // Change condition output file, depending on processor

 conditionOutputFile= getConditionOutputFile(

 conditionOutputFile, dirString);

 new_condition->init(conditionOutputFile, condition_goal);

 optConditions.push_back(new_condition);

 }

 // Set up PGA optimizer

 ctx = PGA::PGACreate(&argc, argv, PGA_DATATYPE_REAL,

 numOptVars, PGA_MINIMIZE);

 // Use random seed

 PGA::PGASetRandomSeed(ctx, randomNumberSeed);

 // Set maximum number of iterations and stopping criteria

 PGA::PGASetStoppingRuleType(ctx, PGA_STOP_MAXITER);

 PGA::PGASetStoppingRuleType(ctx, PGA_STOP_TOOSIMILAR);

 PGA::PGASetStoppingRuleType(ctx, PGA_STOP_NOCHANGE);

 PGA::PGASetMaxGAIterValue(ctx, maxIterations);

 // Set the population size and replacement criteria

 PGA::PGASetPopSize(ctx,generationSize);

 PGA::PGASetNumReplaceValue(ctx, numReplace);

 // Set to print each generation and to print the evaluation string

 PGA::PGASetPrintFrequencyValue(ctx, 1);

 PGA::PGASetPrintOptions(ctx, PGA_REPORT_STRING);

 // Set the maximum and minimum limits on variables

 PGA::PGASetRealInitRange(ctx, optVarMin, optVarMax);

 // Set the crossover type from the default with using only two variables

 if (numOptVars == 2)

 PGA::PGASetCrossoverType(ctx, PGA_CROSSOVER_ONEPT);

 // Run the optimizer

 PGA::PGASetUp(ctx);

 PGA::MyPGARun(ctx);

 // Finish up

 for (int n=0; n<numOptVars; n++)

 {

 // Delete mapping variables

 delete optVarMap[n];

 }

 for (unsigned int n=0; n<optConditions.size(); n++)

 {

 // Delete condition objects

 delete optConditions[n];

 }

 PGA::PGADestroy(ctx);

 MPI_Finalize();

 exit(0);

}

namespace Optimizer

{

22

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

 /// Evaluate the goodness of a function for a particular set of parameters

 /// The return value is zero when conditions are perfect

 double evaluateCase(PGA::PGAContext *ctx, int p, int pop)

 {

 double badness; // Measure of how good the solution is not

 // Construct a directory for files used in evaluating this case

 system(mkdirString.c_str());

 // Try to evaluate the case

 try

 {

 for (int i=0; i<numOptVars; i++)

 {

 // Get the new value to be used

 double newval = PGA::PGAGetRealAllele(ctx, p, pop, i);

 optVar[i] = newval;

 // Check if out of range

 if ((optVar[i] < optVarMin[i]) || (optVar[i] > optVarMax[i]))

 throw runtime_error("Variables out of range");

 }

 // Replace the varying values in the input files

 for (int i=0; i<numVarInFiles; i++)

 {

 string input_now = varInputValue[i];

 string::size_type startIndex = 0;

 while (true)

 {

 // Find the next value to replace

 startIndex = input_now.find("%",startIndex);

 if (startIndex == string::npos)

 break; // Break if done

 string::size_type endIndex =

 input_now.find("%",startIndex+1) + 1;

 // Pull off the expression between the two %s

 string expression = input_now.substr(startIndex+1,

 (endIndex - startIndex) -2);

 // Set the proper values

 // Evaluate the expression using the current values

 char s[100];

 strcpy(s,expression.c_str());

 ROperation op(s, numOptVars, optVarMap);

 double var_value = op.Val();

 // Replace the placeholder with the appropriate value

 input_now.replace(startIndex, endIndex - startIndex,

 HELCAT_tk::tostring(var_value));

 }

 // Write out the new file

 ofstream exec_input(varInProcFile[i].c_str(),ios::trunc);

 exec_input << input_now;

 exec_input.close();

 }

 // Execute the worker program

 int flag = system(executeString.c_str());

 if (flag != 0)

 {

 // Program did not execute properly. The most likely reason is

that

 // the optimizer-produced inputs are toxic. Treat as a bad result.

 throw runtime_error("Program did not execute properly");

 }

23

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

 // Set the goodness value based on all of the conditions

 badness = BADFAIL;

 for (unsigned int n=0; n<optConditions.size(); n++)

 {

 Condition& cond = *(optConditions[n]);

 if (cond.isConstraint())

 {

 // Abort the the constraint is not satisfied

 double failflag = cond.getBadness();

 if (failflag > 0.0)

 {

 // Return sufficiently bad failure to exclude this

solution

 badness = BADFAIL;

 break;

 }

 }

 else

 {

 // Set the badness of the solution

 badness = cond.getBadness();

 }

 }

 }

 catch(...)

 {

 //Failure

 badness = BADFAIL;

 }

 // Remove the directory

 system(rmdirString.c_str());

 // Return the evaluation

 return badness;

 }

 string makeProcName(string path, string filename, int rank)

 /// This routine takes a filename and mutates it based on the processor rank

 {

 // Find where the extension starts

 int dot_point = int(filename.rfind('.'));

 // Separate the file int a beginning and ending part

 string beginning = filename.substr(0, dot_point);

 int filesize = int(filename.size());

 string ending = filename.substr(dot_point, filesize - dot_point);

 // Construct a new filename with the path and with the rank value inserted

 string procFilename = path + string("/")

 + HELCAT_tk::insertNumber(beginning, rank, ending);

 return (procFilename);

 }

 /// This routine replaces all occurrences of a substring in in a string

 /// with a replacement substring

 string findAndReplace(string oldstring, string oldsubstring,

 string newsubstring)

 {

 string newstring = oldstring;

 string::size_type startpoint = 0;

 while(true)

 {

 startpoint = newstring.find(oldsubstring, startpoint);

 if (startpoint == string::npos) break;

 newstring.replace(startpoint, oldsubstring.size(),

 newsubstring);

 // Keep moving forward so that the routine does not break

 // if the old and new substring values are identical

24

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

 startpoint += newsubstring.size();

 }

 return newstring;

 }

/// This function reads in an input file into a string

/// It strips off ending comments

/// This eliminates any % signs in the comments that might cause problems

string readInputFile(string inFile)

{

 string outstring;

 ifstream varInput(inFile.c_str(),ios::in);

 // Read in the file, one line at a time

 while (varInput.good())

 {

 string linestring;

 getline(varInput, linestring);

 // Add line to new string, with end line

 outstring += cleanString(linestring) + HELCAT_tk::newLine();

 }

 return (outstring);

}

 /// This routine is used to flip slashes from forward to back for Windows

 string flipslash(string a_string)

 {

 // Go through character by character

 for (unsigned int n=0; n< a_string.size(); n++)

 {

 if (a_string[n] == '/')

 a_string[n] = '\\';

 }

 return a_string;

 }

/// Routine to print the current state of the optimization

void printCurrentState(PGA::PGAContext *ctx, int pop)

{

 static int generation_number = -1;

 // Set up string stream

 ostringstream oss;

 // Set output stream flags);

 oss << resetiosflags(ios::adjustfield);

 oss << setiosflags(ios::right);

 oss << setprecision(5);

 ofstream optOutStream;

 // New generation

 generation_number++;

 if (generation_number == 0)

 {

 // Open the output file, deleting any previous values

 optOutStream.open(optOutFile.c_str(), ios::trunc);

 // Print out column headings

 oss << setw(7) << "Gen" << setw(12) <<"Miss";

 for (int n=0; n< numOptVars; n++)

 {

25

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

 string varOut = string("Var ") + HELCAT_tk::tostring(n);

 oss << setw(12) << varOut;

 }

 oss << endl;

 }

 else

 {

 // Open the output file and append

 optOutStream.open(optOutFile.c_str(), ios::app);

 }

 // Print out the best answer so far

 int bestindex = PGA::PGAGetBestIndex(ctx, pop);

 double unfitness = PGA::PGAGetEvaluation(ctx, bestindex, pop);

 oss << setw(7) << generation_number << setw(12) << unfitness;

 for (int n=0; n<numOptVars; n++)

 {

 // Print out the current value of each varying input

 double varValue = PGA::PGAGetRealAllele(ctx, bestindex, pop, n);

 oss << setw(12) << varValue;

 }

 // End line and flush

 oss << endl;

 // Dump both to cout and optOutStream

 optOutStream << oss.str();

 cout << oss.str();

}

/// Routine to print the final state of the optimization

void printFinalState(PGA::PGAContext *ctx, int pop)

{

 // Open the output file and append this

 ofstream optOutStream;

 optOutStream.open(optOutFile.c_str(), ios::app);

 // Set output stream flags

 optOutStream << resetiosflags(ios::adjustfield);

 optOutStream << setiosflags(ios::right);

 optOutStream << setprecision(5);

 // Print out all of the final population

 optOutStream << "\n \n"

 << "Final population \n";

 // Print out column headings

 optOutStream << setw(7) << "Index" << setw(12) << "Miss";

 for (int n=0; n< numOptVars; n++)

 {

 string varOut = string("Var ") + HELCAT_tk::tostring(n);

 optOutStream << setw(12) << varOut;

 }

 optOutStream << endl;

 // Print out each individual in the population

 int population = PGA::PGAGetPopSize(ctx);

 for (int i=0; i<population; i++)

 {

 double unfitness = PGA::PGAGetEvaluation(ctx, i, pop);

 optOutStream << setw(7) << i << setw(12) << unfitness;

 for (int n=0; n<numOptVars; n++)

 {

 // Print out the current value of each varying input

 double varValue = PGA::PGAGetRealAllele(ctx, i, pop, n);

 optOutStream << setw(12) << varValue;

 }

 optOutStream << "\n\0";

 }

 /// Flush

 optOutStream << endl;

}

26

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

} // End namespace Optimizer

namespace PGA

{

 /// This a an version of PGARunGM, altered to provide for better I/0.

 void MyPGARun(PGAContext *ctx)

 {

 int rank, Restarted;

 MPI_Comm comm;

 void (*CreateNewGeneration)(PGAContext *, int, int);

 /* Let this be warned:

 * The communicator is NOT duplicated. There might be problems with

 * PGAPack and the user program using the same communicator.

 */

 //PGADebugEntered("MyPGARun");

 comm = PGAGetCommunicator(ctx);

 rank = PGAGetRank(ctx, comm);

 PGAEvaluate(ctx, PGA_OLDPOP, Optimizer::evaluateCase, comm);

 if (rank == 0)

 PGAFitness(ctx, PGA_OLDPOP);

 if (PGAGetMutationOrCrossoverFlag(ctx))

 CreateNewGeneration = PGARunMutationOrCrossover;

 else

 CreateNewGeneration = PGARunMutationAndCrossover;

 while (!PGADone(ctx, comm)) {

 if (rank == 0) {

 Restarted = PGA_FALSE;

 if ((ctx->ga.restart == PGA_TRUE) &&

 (ctx->ga.ItersOfSame % ctx->ga.restartFreq == 0)) {

 ctx->ga.ItersOfSame++;

 Restarted = PGA_TRUE;

 PGARestart(ctx, PGA_OLDPOP, PGA_NEWPOP);

 } else {

 PGASelect(ctx, PGA_OLDPOP);

 CreateNewGeneration(ctx, PGA_OLDPOP, PGA_NEWPOP);

 }

 }

 MPI_Bcast(&Restarted, 1, MPI_INT, 0, comm);

 PGAEvaluate(ctx, PGA_NEWPOP, Optimizer::evaluateCase, comm);

 if (rank == 0)

 PGAFitness(ctx, PGA_NEWPOP);

 /* If the GA wasn't restarted, update the generation and print

 * stuff. We do this because a restart is NOT counted as a

 * complete generation.

 */

 if (!Restarted) {

 PGAUpdateGeneration(ctx, comm);

 if (rank == 0)

 Optimizer::printCurrentState(ctx, PGA_OLDPOP);

 //PGAPrintReport(ctx, stdout, PGA_OLDPOP);

 }

 }

 if (rank == 0) {

 Optimizer::printFinalState(ctx, PGA_OLDPOP);

 //best_p = PGAGetBestIndex(ctx, PGA_OLDPOP);

 //printf("The Best Evaluation: %e.\n",

 // PGAGetEvaluation(ctx, best_p, PGA_OLDPOP));

 //printf("The Best String:\n");

 //PGAPrintString(ctx, stdout, best_p, PGA_OLDPOP);

27

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

 //fflush(stdout);

 }

 //PGADebugExited("MyPGARun");

 }

} // End namespace

28

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

ProgramSpecific.cpp

/// This file holds certain functions that must be written specifically

/// for the code

#include <string>

using namespace std;

namespace Optimizer{

/// This routine must be specifically written for each program to be optimized

/// The routine is passed the output directory to be used, in clase this is

/// one of the arguements to the program. If it is not, then the output

/// directory will need to be included somewhere in the input file data.

/// Note that the output directory will be different for each process

/// when multiprocessing is used for optimization.

string getExecutionString(string* input_files, string output_directory)

{

 string prefixString = output_directory + string("/TEMP");

 string executionString = string("BTECThermal ") +

 input_files[0] + string(" ") + prefixString;

 return (executionString);

}

/// Construct the name of the output file for a condition, given the desired

/// file name and the output file directory. This routine needs to be

/// rewritten for each program to be optimized.

string getConditionOutputFile(string filename, string output_directory)

{

 string prefixString = output_directory + string("/TEMP");

 string conditionOutputFilename = prefixString + string(".") + filename;

 return (conditionOutputFilename);

}

/// In order to perform substitutions properly, the code must not include

/// and percent signs that are not used for substitutions. The BTEC code

/// frequently has these in comments, and this routine removes all comments

/// from a BTEC input file

string cleanString(string linestring)

{

 // Strip off any ending comments

 string::size_type commentIndex = linestring.find("#");

 if (commentIndex != string::npos)

 {

 // Strip off comment

 linestring = linestring.substr(0,commentIndex);

 }

 return (linestring);

}

} // End namespace

29

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

SpecificConditions.h

#ifndef SpecificConditionsH

#define SpecificConditionsH

#include "Condition.h"

/// This header is used to define classes that are specific to the

/// program being optimized. A new version must be constructed for

/// each program to be optimized.

#define CONDITION0 MaxAllowedDamage

#define CONDITION1 MaximizeTempRise

namespace Optimizer {

class MaxAllowedDamage : public Condition

 /// This represents the Condition class which sets a maximum allowed value

 /// for some variable. The implimentation is specific to the probe files

 /// of the BTEC code.

{

public:

 // Constructor

 MaxAllowedDamage() {}

 bool isConstraint()

 {

 return (true);

 }

 double getBadness();

};

class MaximizeTempRise : public Condition

 /// This represents the Condition class which is optimal with the maximum

 /// peak value. The implimentation is specific to the probe files of the

 /// BTEC code.

{

public:

 // Constructor

 MaximizeTempRise() {}

 bool isConstraint()

 {

 return (false);

 }

 double getBadness();

};

} // End namespace

#endif

30

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

SpecificCondition.cpp

/// This file holds the routines for the specific conditions that are being

/// optimized for a program.

/// This file must be rewritten for the individual program to be optimized.

#include "SpecificConditions.h"

#include <iostream>

#include <fstream>

#include <string>

#include <sstream>

using namespace std;

namespace Optimizer

{

/// Set whether a situation is within allowed boundaries

double MaxAllowedDamage::getBadness()

{

 // Open the output file

 ifstream outputStream(mOutputFile.c_str(), ios::in);

 // Read in each line and check its value

 while (outputStream.good())

 {

 string line;

 getline(outputStream,line);

 // Ignore comment lines

 if (line[0] == '#')

 continue;

 /// Get the value on the line

 double time, val;

 istringstream iss(line);

 iss >> time >> val;

 // Return if exceeds bounds

 if (val > mGoal)

 return (1.0);

 }

 // Reaching this point implies the condition was satisfied

 return (0.0);

}

/// Set whether a situation is within allowed boundaries

double MaximizeTempRise::getBadness()

{

 // Open the output file

 ifstream outputStream(mOutputFile.c_str(), ios::in);

 if (!outputStream.good())

 throw runtime_error("Bad read-in of output file");

 // Read in each line and check its value

 double minval = 1.0e10;

 double maxval = -1.0e10;

 while (outputStream.good())

 {

 string line;

 getline(outputStream,line);

 // Ignore blank and comment lines

 if (line.size() == 0)

 continue;

 if (line[0] == ' ')

31

Distribution A: Approved for public release; distribution unlimited. Approval given by local 311th Public Affairs Office,

Case file no. 10-032, 8 February 2010, Brooks City-Base, Texas 78235.

 continue;

 if (line[0] == '#')

 continue;

 /// Get the value on the line

 double time, val;

 istringstream iss(line);

 iss >> time >> val;

 /// Update max an min values, if needed

 if (val > maxval)

 {

 maxval = val;

 }

 if (val < minval)

 {

 minval = val;

 }

 }

 // Return the badness as inverse of the difference between maximum and

 // minimum values

 return (1.0/(maxval - minval));

}

} // End namespace optimizer

